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Biodiversity is considered to be an essential element of the Earth system, driving important ecosystem services.
However, the conservation of biodiversity in a quickly changing world is a challenging task which requires cost-
efficient and precise monitoring systems. In the present study, the suitability of airborne discrete-return LiDAR
data for the mapping of vascular plant species richness within a Sub-Mediterranean second growth native forest
ecosystemwas examined. The vascular plant richness of four different layers (total, tree, shrub andherb richness)
was modeled using twelve LiDAR-derived variables. As species richness values are typically count data, the cor-
responding asymmetry and heteroscedasticity in the error distribution has to be considered. In this context, we
compared the suitability of random forest (RF) and a Generalized Linear Model (GLM) with a negative binomial
error distribution. Both models were coupled with a feature selection approach to identify the most relevant
LiDAR predictors and keep the models parsimonious. The results of RF and GLM agreed that the three most im-
portant predictors for all four layers were altitude above sea level, standard deviation of slope and mean canopy
height. This was consistentwith the preconception of LiDAR's suitability for estimating species richness, which is
its capacity to capture three types of information: micro-topographical, macro-topographical and canopy struc-
tural. Generalized Linear Models showed higher performances (r2: 0.66, 0.50, 0.52, 0.50; nRMSE: 16.29%, 19.08%,
17.89%, 21.31% for total, tree, shrub and herb richness respectively) than RF (r2: 0.55, 0.33, 0.45, 0.46; nRMSE:
18.30%, 21.90%, 18.95%, 21.00% for total, tree, shrub and herb richness, respectively). Furthermore, the results
of the best GLMweremore parsimonious (three predictors) and less biased than the best RFmodels (twelve pre-
dictors). We think that this is due to the mentioned non-symmetric error distribution of the species richness
values, which RF is unable to properly capture.
Fromanecological perspective, the predicted patterns agreedwellwith the known vegetation composition of the
area. We found especially high species numbers at low elevations and along riversides. In these areas, overlap-
ping distributions of thermopile sclerophyllos species, water demanding Valdivian evergreen species and species
growing in Nothofagus obliqua forests occur.
The threemain conclusions of the study are: 1) appropriatemodel selection is crucial whenworkingwith biodiver-
sity countdata; 2) the applicationofRF fordatawithnon-symmetric errordistributions is questionable; and3) struc-
tural and topographic information derived from LiDAR data is useful for predicting local plant species richness.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Today, biodiversity is considered to be an essential element of the
Earth system from which all humans benefit directly or indirectly
Geoecology, Karlsruhe Institute
rmany.
olos@kit.edu (K. Dolos),
e.uchile.cl (M. Galleguillos),
(Duffy, 2009). As a consequence of the dramatic impacts following
human-induced changes to ecosystems worldwide, over the last few
decades the current and future state of biodiversity has been receiving
greater scientific and political interest. This interest is also motivated
by an increased awareness of the adverse effects of reduced biodiversity
on ecosystem services, onwhich humanwell-being depends (Balvanera
et al., 2006; Carpenter, Bennett, & Peterson, 2006). To enable appropri-
ate conservation and management strategies (with often limited re-
sources), it is important to efficiently identify and monitor species rich
sites (Turner et al., 2003). Theoretical and empirical studies have
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suggested that local biodiversity is positively influenced by environ-
mental heterogeneity (EH) (Stein, Gerstner, & Kreft, 2014). EH can be
understood as the (co-) occurrence of a variety of environmental gradi-
ents and therefore habitat types (typically connected to high resource
and structural complexity), offering a high diversity of niches over a
comparably small area. A higher number of niches can in turn be colo-
nized and inhabited by a greater number of species (e.g. Dufour,
Gadallah, Wagner, Guisan, & Butler, 2006; Stein et al., 2014). In the spe-
cial case of forests, topography for example can cause niche variability
by separating the terrain into shaded and sunny slopes or by diversify-
ing the local hydrology. Furthermore, vegetation structure can have a
notable impact on niche diversity. For example, even aged forest stands
provide fewer habitats than uneven aged multi-species forests (Gilbert
& Lechowicz, 2004). As both passive (i.e. multi and hyperspectral) and
active (i.e. LiDAR and Radar) sensors are able to deliver information
on EH, they should also have a high potential for supporting the estima-
tion and monitoring of species richness (Turner, 2014).

One important measure for biodiversity is the number (α-diversity)
and variety of biotic species within a given geographic region (Kuenzer
et al., 2014). A number of remote sensing studies in the last decade have
attempted to map plant α-diversity, mostly using optical sensors
(Rocchini et al., 2010). Within this context, Palmer, Earls, Hoagland,
White, and Wohlgemuth (2002) formulated the spectral variation hy-
pothesis (SVH), which states that spectral heterogeneity as measured
by optical remote sensing systems relates to spatial (environmental)
heterogeneity and thereby – as explained above – to species richness
(Rocchini, 2007). A review on the state of the art of this research field
is provided by Rocchini et al. (2010)who overview the differing aspects
of remote sensing techniques that have been examined in the context of
biodiversity assessment. These include the problem of scale (pixel size
versus field sampling units), methods to measure spectral heterogene-
ity (crisp classification versus fuzzy methods or the direct application
of non-classified reflectance values), as well as the question of how
the derived spectral heterogeneity is connected to biodiversity. Howev-
er, this last question requires a definition of biodiversity, which can be
defined either taxonomically, functionally or genetically. According to
Rocchini et al. (2010), most remote-sensing studies focus on taxonomic
diversity. Finally, the success for estimating species richness from re-
mote sensing data is also influenced by the structure of the field data
(abundance data versus presence/absence) and the applied modeling
techniques.

While the application of passive optical remote sensing sensors for
estimating biodiversity has significantly advanced over the last two de-
cades, the number of studies investigating the potential of active optical
sensors such as Light Detection and Ranging (LiDAR) is still sparse.
LiDAR has proven to be one of the most powerful data acquisition sys-
tems for obtaining topographical and vegetation-structural information
(French, 2003; Lefsky, Cohen, Parker, & Harding, 2002). Both of these
types of information were found in earlier studies to be able to estimate
EH (Bergen et al., 2009; Dauber et al., 2003; Gaston, 2000). According to
Bergen et al. (2009), thismakes LiDAR information a good proxy for spe-
cies richness, especially in forests with high vertical complexity. One
focus of earlier studies was the application of LiDAR-derived forest
structural and topographical information to predict forest fauna rich-
ness (e.g. Clawges, Vierling, Vierling, & Rowell, 2008; Goetz, Steinberg,
Dubayah, & Blair, 2007; Vierling et al., 2011). A smaller number of
studies also focused on forest flora richness with successful results
(e.g. Hernández-Stefanoni et al., 2014; Lopatin, Galleguillos, Fassnacht,
Ceballos, & Hernández, 2015; van Ewijk, Randin, Treitz, & Scott, 2014),
confirming the suitability of LiDAR data for estimating plant species
richness.

Generally, LiDAR data relate to three types of information which
interact with plant species richness: micro-topographical, macro-
topographical and canopy structural information. Macro-topography
has been shown to be highly correlatedwith plant species distributions.
Important factors include altitude above sea level, aspect and slope
which relate to climate (e.g. irradiation, temperature, precipitation)
and geomorphology (e.g. erosion intensity). These factors influence spe-
cies composition by, for example, limiting the available light (limited ir-
radiation on shaded slopes) or temperature (high altitudes) whichmay
keep certain species from growing. Steep slopesmay result in increased
erosion risk, leading to areas with mechanical disturbances and poor
soils which may only be suitable for stress-tolerating species.

Micro-topography (i.e. local slope or surface roughness conditions)
as measured by LiDAR systems presumably acts as a proxy of small-
scale habitat structures such as shaded humid sinks or areas with
deeper soils (Moeslund et al., 2013; Silvertown, Dodd, Gowing, &
Mountford, 1999). Depending on the number of LiDAR returns and the
penetration ability of the applied scanning system, micro-topographic
features might also be directly related to the presence of a dense herb
or shrub layer, which cannot be penetrated by the LiDAR signal and
therefore leading to increased surface roughness in the derived digital
terrainmodel. The penetration capability of the LiDAR sensor is a gener-
al limitation which hampers the collection of information on micro-
topographic conditions. For example, in the presence of a very dense
overstory, only a limited number of returnsmay come from the ground.

Finally, canopy characteristics such as differences in canopy height,
leaf size and leaf orientation, lead to different canopy closure percent-
ages or leaf area index values (Morsdorf, Kötz, Meier, Itten, &
Allgöwer, 2006; Popescu, Wynne, & Nelson, 2003; Pope & Treitz,
2013; Woods, Lim, & Treitz, 2008). According to Lemenih, Gidyelew,
and Teketay (2004) this influences the light conditions on the ground
which in turn affects the species composition and richness. Thus,
LiDAR information should be able to both provide a good description
of the (upper) canopy structure as well as deliver valuable information
concerning the understory conditions (Eskelson, Madsen, Hagar, &
Temesgen, 2011; Su & Bork, 2007; Wing et al., 2012), which has been
confirmed by a few earlier studies (e.g. Leutner et al., 2012; Wolf et al.,
2012). Therefore, considering both the theoretical suitability of LiDAR
data as well as the promising results of past studies, we think that it is
valuable to further examine and refine the application of LiDAR data
for estimating phyto-diversity.

One potential field for refinements is in the model building process.
According to Rocchini et al. (2010), earlier studies focusing on the esti-
mation of biodiversity from remote sensing data often followed simple
univariate regression approaches (Oldeland,Wesuls, Rocchini, Schmidt,
& Jurgens, 2010; Palmer et al., 2002; Rocchini, Chiarucci, & Loiselle,
2004) while others integratedweighting procedures into the univariate
model set-up (Foody, 2005; Nagendra, Rocchini, Ghate, Sharma, &
Pareeth, 2010). Furthermore, there are a few recent examples of ad-
vanced modeling techniques from the field of statistics, such as partial
least square (PLS)-based models (Feilhauer & Schmidtlein, 2009) or
Generalized Additive Models (GAM) (Fava et al., 2010), as well as
from the field of machine learning, such as neural networks (Foody &
Cutler, 2003). Studies following such approaches often used feature ex-
traction approaches to address multi-collinearity originating from the
multi- or hyperspectral bands (Fava et al., 2010; Higgins et al., 2014;
Rocchini, 2007). Other studies applied feature selection approaches to
reduce the feature space (Camathias, Bergamini, Küchler, Stofer, &
Baltensweiler, 2013; Hernández-Stefanoni et al., 2014). Some earlier
studies (e.g. Foody & Cutler, 2006) have claimed that simple methodo-
logical approaches such as the application of vegetation indices and
standard regression techniques are not able to fully use the information
content of remotely sensed data. In spite of this drawback, parametric
statistical models are still useful because they provide an opportunity
to account for the distribution of the response variable and the model
residuals (Nelder & Wedderburn, 1972). As species richness is mea-
sured as count data (i.e. number of species), which are discrete and lim-
ited to non-negative values (Zeileis, Kleiber & Jackman, 2008), typical
appropriate statistical families for the error distribution are the Poisson
or negative binomial distribution. Applying techniques which assume
symmetry or homoscedasticity – or even a Gaussian distribution of
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the residuals –will often lead to a sub-optimalmodel fit in terms of pre-
cision and bias, which in the worst case can lead to a misinterpretation
of the results (Hayes & Cai, 2007; Manning & Mullahy, 2001).

To resolve these issues, there are two tendencies in remote sensing.
The first way is an evasion of these issues using the field of machine
learning (e.g., Foody & Cutler, 2003; Foody & Cutler, 2006; Leutner
et al., 2012). As many machine learning methods are described as
being non-parametric, it is frequently assumed that there are no
requirements concerning the error distribution. However, this is not
true for regression trees and random forest methods, which either fit
standard linear (Gaussian) regressions for tree nodes or are based on
measures for node impurity, such as the sum of squared deviations
to the mean (Loh, 2011), and thereby do not account for asymmetry
and heteroscedasticity (Chaudhuri, Lo, Loh & Yang, 1995; Ciampi,
1991). The second way is to apply transformations of the dependent
variable (e.g., Camathias et al., 2013; Hernández-Stefanoni et al.,
2014). However, a well-known problem with data transformations is
the trade-off between homoscedasticity and linearity (O'Hara & Kotze,
2010). The family of transformations used may not be able to correct
one or both of these problems. An additional problem with the regres-
sion of transformed variables is that it can lead to impossible predic-
tions, such as negative species numbers due to back-transformation of
the response. Motivated by these challenges, Generalized LinearModels
(GLMs) were developed (Nelder & Wedderburn, 1972). Among other
options, GLMs allow for the specification of an error distribution and
link function appropriate for count data such as species richness
(e.g., Poisson or negative binomial). The option to choose an appropriate
model family for the particularmodeling task is an additional advantage
of GLMs and similar approaches (e.g. GAMs, GLMMs) over standardma-
chine learning methods, ordinary least squares and some PLS-based
models.

In summary, the application of active LiDAR for predicting biodiver-
sity, and plant diversity in particular, is still under-examined, although
the suitability of the data has been demonstrated. Furthermore, random
forest – one of the most frequently applied machine learning methods
in remote sensing – is suspected to ignore the nature of count data.
Fig. 1. A) Location of the study area; B) the distribution of field measured richne
Therefore, in this study, we applied discrete return LiDAR data to
model vascular plant species richness (α-diversity) in a highly complex
second growth forest in Central Chile.We compared random forest with
a GLM which we optimized for the response variables by assuming a
negative binomial data distribution.

2. Material and methods

2.1. Study area

The study area,Monte Oscuro, is located in central Chile in theMaule
region (35°07′00″ S, 70°55′30″W)(Fig. 1 A). This area is associatedwith
the Sub-Mediterranean Temperate bioclimatic zone. The total annual
precipitation (1000 mm) is mainly concentrated between April and
October, andmonthlymean temperatures range from8 °C in the coldest
months (June to August) to 18 °C in the warmest months (December to
February). The site covers an extent of 1295 ha, and features a mean al-
titude of 1075 m above sea level with most slopes facing south. Monte
Oscuro is located in a transitional vegetation zone where species of
the Mediterranean sclerophyll forest (e.g. Quillaja saponaria Mol.,
Cryptocarya alba (Molina) Looser, Lithraea caustica (Molina) Hook et
Arn.) coexist with the Valdivian forest evergreen species in a matrix
dominated by Nothofagus obliqua (Mirb.) Oerst. (Gajardo, 1994).

2.2. Ground data

Thefield survey focused on vascular plants because of the clear dom-
inance of this taxon in Chilean Sub-Mediterranean forests. Furthermore,
earlier studies showed the particular importance of vascular plants for
the trophic network and other ecological processes (Palmer et al.,
2002).

A vegetation assessment was conducted between January 2013 and
January 2014. The 80 surveyed square nested plots were allocated in a
200 × 200 m regular grid (Fig. 1 B). To avoid the effect of borders and
bare soil in the plots and also to facilitate operational effort, steep
ss values are illustrated, and C) detail of a sampling unit with nested plots.
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zones (N45%) and sites which were too close to trails (20 m) were
excluded from the survey.

Species were sampled in three height layers: trees (height of 2 m or
more), shrubs (less than 2 m of height) and herbs (non-woody plants).
Each of the 80 plots was composed of six nested subplots. In the largest
plot with an area of 225 m2 (15 m × 15 m) only trees were registered.
Shrubs were sampled in two subplots of 25 m2 (5 m × 5 m) while
herbs were registered in three sub-subplots of 1 m2 (see Fig. 1 C).

Finally, the total richness of vascular plant species within each of the
80 plots was calculated by summing up all species in all height layers,
and as encountered in the plots and subplots. Species occurring in sev-
eral height layers (e.g. tree and shrub layers) were only counted once.

2.3. LiDAR data

A discrete return LiDAR system (Harrier 54/G4 Dual System,
manufactured by Trimble Industries and provided by Digimapas Chile
Ltda., Santiago, Chile) was applied to gather airborne LiDAR data over
the study site in March, 2011. The Harrier 54/G4 Dual System features
a 1550 nm laser with a scanning frequency of 100 Hz, a pulse rate of
100 kHz, a scan angle (FOV) of ±22.5°, and a laser beam divergence
(IFOV) of 0.5 mrad. The obtained point cloud had an average point
density of 4.64 points per m2 and a footprint diameter of 29 cm.

The LiDAR point cloudwas classified into ground and non-ground
points for bare-earth extraction according to Briese (2010). A digital
terrain model (DTM) and a digital canopy model (DCM) of 1 m pixel
size were calculated by interpolating the classified point cloud. The
optimal pixel size was empirically selected based on further experi-
ments that can be found in the Supplementary data. Consequently,
each of the sampling plots contains ~225 pixels of DTM and DCM
derived variables.

2.4. Predictor variables

At the location of each sample plot the mean values (and in two
cases the standard deviation) of several topographical and vegetation-
related predictor variables were derived from the LiDAR DTM and
DCM and used in the models for species richness prediction (Table 1).
The choice of the topographical variables was influenced by the results
of earlier studies also focusing on the estimation of plant species rich-
ness (Bässler et al., 2010; Camathias et al., 2013; Ceballos, Hernández,
Corvalán, & Galleguillos, 2015). We selected topographical variables
carrying information on macro-topography (e.g. altitude above sea
level (DTM), normalized heights) and micro-topography (e.g. standard
deviation of the slope (sd slope)). The canopy related variableswere de-
rived from the DCM. Canopy structure, particularly its density, influ-
ences light conditions in all underlying forest layers (Lemenih et al.,
2004). In the present case, we used textural information (co-occurrence
texturalmatrix), theheight (mean canopyheight) and thehomogeneity
of the canopy (sd canopy height) as proxies for the canopy structure
Table 1
Predictor variables used in both model approaches (RF and GLM) to estimate vascular plant sp

Variable Description

Aspect Mean of the aspect pixel values (°).
DTM Mean value of the altitude above sea level pixel value
sd Slope Standard deviation of the slope pixel values (%).
TWI Mean of the topographic wetness index pixel values (

describes humidity patterns based on micro-topograp
Normalized heights Mean of the normalized height index (Böhner, Böhne

This index describes the altitude difference of the altit
of the next corresponding valley. It is therefore a mea

Co-occurrence textural matrix Mean pixel values of the co-occurrence textural matri
entropy, contrast, dissimilarity and second-moment o

Mean canopy height Mean of the canopy height model pixel values.
Sd canopy height Standard deviation of the canopy height model pixel v
and its density. We assume that comparably smooth canopy surfaces
indicate a closed canopy while lighter canopies show higher canopy
roughness due to gaps. Both the co-occurrence textural matrix values
as well as the variable sd canopy height should serve as descriptors of
this canopy roughness. Furthermore, the mean canopy height serves
as a proxy for the successional or developmental stage of forests. Differ-
ing forest succession and development stages have also been found to
be related to special understory conditions in earlier studies, as further
discussed below (Emborg, 1998; Guariguata & Ostertag, 2001).

2.5. Statistical models

Species richnesswasmodeled using two approaches: Random forest
(RF) and a Generalized Linear Model (GLM).

The ensemble regression tree method RF (Breiman, 2001) has been
reported to be an efficient prediction approach, especially when – as
in the present case – the numbers of observations are comparably low
compared to the number of predictors (Svetnik et al., 2003).We applied
the RF routine in R (package random Forest, Liaw & Wiener, 2002).
Technical details on the applied RF algorithm can be found in Latifi,
Fassnacht, and Koch (2012) and Ghosh and Joshi (2014). RF requires
two parameters to be set: 1) mtry, the number of predictor variables
performing the data partitioning at each node and 2) ntree, the total
number of trees to be grown in the model run. Based on earlier experi-
ences and recommendations from literature we set the number of ntree
to 500, whereas mtry was fixed to 7 after some initial tuning experi-
ments. The importance of predictor variables was measured by the
Gini decrease in node impuritymeasure, which is computed by permut-
ing the predictor variables with the out-of-bag data in the RF validation
approach (details in Liaw & Wiener, 2002).

Processing of the datawith GLMs can be subdivided into three steps:

(1) The first step was to identify an appropriate model family able to
deal with the statistical properties of count data. We therefore
compared the normalized quantile-plots of the residuals of sev-
eral GLMs, calculated with model families which are generally
recommended to be used with count data. We ran GLMs with
log link functions and Poisson, Quasi-Poisson as well as negative
binomial distributed residuals for each response variable. In ad-
dition, models assuming a Gaussian error distribution (which
theoretically are not suitable for count data) with and without
log link functions were calculated. In this first step the models
were calculated based on a single predictor variable (mean can-
opy height) which was selected in a preceding analysis. Judging
from the normalized quantile-plots of the residuals, the negative
binomial error distribution with a log-link function appeared to
perform slightly better than Poisson and Quasi-Poisson regres-
sion. As expected, the models assuming a Gaussian error distri-
bution (with and without log-link) resulted in non-acceptable
distributions of the residuals.
ecies richness. Predictors were derived from the LiDAR DTM and DCM.

Type

DTM Macro- Topography
s (m).

Micro-
Beven & Kirkby, 1979). This index
hy.
r, Blaschke, & Montanarella, 2008).
ude in a given pixel and the bottom
sure for the distance from a riverside.
x. These include the homogeneity,
f the canopy height model.

DCM Canopy-structure

alues.
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(2) As GLMs cannot cope with multi-collinearity among indepen-
dent variables, the search for an appropriate model family was
followed by a variable selection procedure to find the most
important and at the same time uncorrelated predictors.
Scatterplots between the individual predictors and the response
variables showed in most cases linear relations between the var-
iables. This allowed us to use hierarchical partitioning in which
we selected a negative binomial error distribution (compare
step 1) and log link function (R-package “hier.part”, Chevan &
Sutherland, 1991) to measure the variable importance. This var-
iable importance, calculated as percentage of total explained var-
iance, was also compared with the rank of variable importance
given by the Gini impurity index of RF.

(3) The resulting variable importances were used to select the pre-
dictor variables for the final models. The final number of predic-
tor variables was determined by calculating several models and
adding a single variable in each run (starting with the most im-
portant variable) and comparing the akaike information criterion
(AIC) and deviance explained for the results. The best results
were obtained using three predictors.

For validation purposes, the best GLM as well as the RF model were
embedded in a bootstrap with 500 iterations. In each bootstrap itera-
tion,we drew80 timeswith replacement from the 80 available samples.
In this procedure, on average 36.8% of the total number of samples (~28
samples) are not drawn. These samples were subsequently used as
holdout samples for an independent validation (Fassnacht et al.,
2014b). The model performances of RF and GLM were compared
based on differences in the coefficients of determination (r2 — calculat-
ed as the squared Pearson's correlation coefficient) and the normalized
root mean square error (nRMSE) between predicted and observed rich-
ness values of the hold-out samples in the bootstrap. To enable sound
comparisons between the four response variables, the normalized
RMSE (nRMSE) calculated as [RMSE/[max(number of species) −
min(number of species)]] × 100 was used, where RMSE is calculated

as RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n∑

n
j¼1ðyj−ŷ jÞ

2
q

with y = reference species richness
value, ŷ=estimated species richness value and n=number of samples.
High values of r2 and low values of nRMSE indicate high model quality.
The bias of predictionwasmeasured as oneminus the slope of a regres-
sion without intercept of the predicted versus observed values.

To test if model quality was statistically better for GLM than for
RF, a one-sided bootstrap test was performed using the function
“boot” available in the R package “boot” (Canty & Ripley, 2014).
Test variables were calculated by subtracting the nRMSE and bias
values of GLM from the ones produced by RF, and the other way
around for r2. For these distributions a one sided test was performed
to test if the differences between GLM and RF values were larger than
zero based on 500 bootstrap samples. The level for significance was
set to α = 0.05.

2.6. Predictive species maps

Predictive maps of species richness were calculated for each layer
based on the best obtainedmodels. A convex hull mask was then applied
to exclude all pixels outside of the value range of data used for fitting the
models. This was necessary because predictions of statistical models are
highly uncertain outside the data range used for fitting the model
(e.g., there are no sampling plots in bare soil areas, so the model predic-
tions for those areas are extrapolations and highly uncertain). The
“alphahull” R-package was used (Pateiro-Lopez & Rodriguez-Casal,
2013) to calculate the mask. In the maps, white areas indicate areas out
of the value range, which were excluded by applying the convex hull
mask. Additionally, a map of the coefficient of variation (CV, given in %)
values for the species richness predictions (as obtained from the 500
bootstrap runs) was produced for the entire area.
3. Results

3.1. Variable importance

Variable importance was determined for both modeling approaches
(hierarchical partitioning and Gini impurity index for GLM and RF, re-
spectively) and for each forest layer. The results of both approaches
agreed that the three most important predictor variables for modeling
species richness for all forest layers are mean canopy height, mean alti-
tude above sea level (DTM) and sd slope. In almost all cases, mean can-
opy height was selected as the best predictor, except for the RF model
for the tree layer where the DTMwas found to be of highest importance
(Fig. 2).

3.2. Model performances

For GLM the threemost important variables were considered (mean
canopy height, DTM and sd slope) in the model building process while
for the RF models all variables were used. The model performance re-
sults were summarized in terms of r2, nRMSE and bias for all 500 boot-
strap values (see Fig. 3). GLMs showed systematically higher r2, lower
nRMSE values and less bias than RF (Table 2). The only exception was
the herb layerwhich showedmarginally higher errors for theGLMcom-
pared to RF. The bestmodelfit was foundwhenpredicting total richness
with GLM(median bootstrap r2 of 0.65 and nRMSE of 16.60%),while the
worst fit was observed for tree richness with RF (median bootstrap r2 of
0.32 and nRMSE of 20.01%). Furthermore, both models showed a sys-
tematic tendency to overestimate small values and underestimate
high values (Fig. 4). This effect was stronger in the RF models.

The bootstrap test for differences in themodel quality measures was
significant for six out of 12 tests. Regarding r2 GLMwas significantly bet-
ter than RF for all layers but the shrub layer. For nRMSE GLM results
were significantly better for total richness and tree richness estimates
while the results for the herb and shrub layers were inconclusive.
Differences in bias were only significant for the shrub layer (Table 3).

3.3. Prediction maps

The prediction map of vascular plant richness showed a general
tendency towards high richness values in low altitude areas and near
riversides (Fig. 5). This tendency was found in all height layers. In
addition, increased herb richness close to bare soil areas (masked
areas) was apparent. The coefficient of variation (CV) map obtained
from the 500 bootstrap predictions of the GLMs (Fig. 6) showed that
total, tree and shrub richness values were predicted with relatively
low variation (0–5%), while the predictions for the herb layer showed
higher variation (5–15%). These results agreed with the nRMSE errors
which were also highest for the herb layer. Furthermore, there seemed
to be a general tendency towards higher variation (10–20%) in the
predictions along riversides.

4. Discussion

In the present study, the suitability of airborne discrete-return LiDAR
data for the mapping of vascular plant species richness within a Sub-
Mediterranean second growth forest ecosystem was examined. The
findings of the study are discussed in three sections. First, we discuss
the ecological meaning of the variables identified as themost important
predictors (mean canopy height, DTM and sd slope). Second, we debate
the spatial patterns of species richness distribution for all layers. Third,
the results of the model comparison (GLM, RF) are discussed.

4.1. Selected predictor variables and their ecological implications

RF and GLM both identified mean canopy height as themost impor-
tant variable for modeling the species richness of vascular plants in the



Fig. 2. Variable importance using the Gini impurity index (RF) and hierarchical partitioning with negative binomial model family and log-link function (GLM). The mean values of the
500 bootstraps are shown.
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study region. This is in agreement with earlier studies focusing on
species richness estimations from LiDAR data (Simonson, Allen, &
Coomes, 2012;Wolf et al., 2012). In former studies,mean canopy height
was proven to be a reliable proxy for forest properties such as above-
ground biomass (Fassnacht et al., 2014a; Kattenborn et al., 2015; Latifi
et al., 2012), or forest successional stages (Falkowski, Evans,
Martinuzzi, Gessler, & Hudak, 2009). In differing successional
or development stages of forests, the environmental conditions
(e.g., light and water availability or micro-climatic conditions) in the
stands differ and thereby influence the composition of the species' com-
munities in all height layers (Emborg, 1998; Guariguata & Ostertag,
2001). Due to the use of the forests in the Monte Oscuro area by selec-
tive logging for construction wood and charcoal in the 1950s, a mosaic
of several successional stages can be found in the study area. The
harvested forest stands were abandoned and were subject to natural
succession, while some other stands in less accessible areaswere not in-
tervened andwere able to develop towards older development stages. It
is likely that the importance of the mean canopy height relates to these
processes.

Aside from the mean canopy height, the two topographic variables
altitude above sea level (DTM) and sd slope (describing terrain hetero-
geneity on amicro-topographic scale)were identified as the second and
third ranked variables in the feature selection. This again agrees well
Fig. 3. Model accuracies of random forest (RF, black plots) and Generalized Linear Models (G
Beanplots display distribution of results for the 500 bootstrap runs. Black horizontal lines indic
with earlier studies (e.g., Bässler et al., 2010; Bergen et al., 2009;
Camathias et al., 2013; Ceballos et al., 2015; Rocchini et al., 2010).

In the present study, species richness was higher at lower altitudes.
It is known that the species richness of the Chileanmountains generally
declines with altitude (Gajardo, 1994). Within alpine communities,
Henrik et al. (2006) described the relationship between altitude and
species richness as a trade-off between a declining species pool (due
to increasingly unfavorable environmental conditions) and the decreas-
ing intensity of competition with altitude (due to reduced number of
species). Therefore, in many cases unimodal relations between altitude
and species richness could be observed. In the present case, the ob-
served pattern of declining species numbers with increasing altitude
must also be discussed in the context of the land use history of the
study area. As mentioned before, significant interventions occurred in
the 1950s for some forest stands in the study area. The extent and inten-
sity of logging was stronger in easily accessible areas, which were usu-
ally located at low elevations. Therefore, the higher species richness at
lower elevations, particularly in the tree layer, could be explained by
the coexistence of species typically occurring in early (e.g., light de-
manding pioneer species such as L. caustica) and late (e.g., N. obliqua)
successional stages of the forests.

The third ranked variable sd slope describes terrain heterogeneity
and was found to be positively correlated with species richness in
LM, gray plots) in terms of r2 (left panel), nRMSE (central panel) and bias (right panel).
ate the median values of the distribution.



Table 2
Model accuracies per forest layer. The median bootstrap values are displayed.

Forest
layer

r2 −
GLM

r2 −
RF

nRMSE (%) −
GLM

nRMSE (%) −
RF

Bias −
GLM

Bias −
RF

Total 0.66 0.55 16.29 18.30 0.05 0.07
Tree 0.50 0.33 19.08 21.90 0.06 0.08
Shrub 0.52 0.45 17.89 18.95 0.08 0.09
Herb 0.50 0.46 21.31 21.00 0.09 0.13

Table 3
Results for bootstrap test to check for statistical differences in model quality measures r2,
nRMSE and bias as obtained byGLM and RF for tree, shrub and herb layer. H0:model qual-
ity measures do not differ, Ha: model quality is better for GLM than RF. Number of boot-
strap samples = 500; α = 0.05.

Layer/quality measure r2 nRMSE Bias

Total ⁎ ⁎ –

Tree ⁎ ⁎ –

Shrub – – ⁎

Herb ⁎ – –

⁎ Indicates a significant test result.
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Monte Oscuro. At the local scale, high terrain heterogeneity causes dif-
ferences in soil conditions such as water availability (Silvertown et al.,
1999; Moeslund et al., 2013) and vertical nutrient distribution
(Everson & Boucher, 1998). This increases habitat heterogeneity and
can foster increased species richness. Generally, micro-topography is
difficult to consider in biodiversity studies due to the lack of reliable spa-
tially continuous data over larger areas. In the present study the applica-
tion of a LiDAR terrain model with 1 m pixel size allowed for the
consideration of variables describing micro-topography. However, due
to the functioning of LiDAR systems, uncertainty remains regarding
the share of the signal that actually describesmicro-topography, in con-
trast to the intermingling effect of dense understory vegetation. In the
present case, where LiDAR data was collected over relatively dense can-
opies, the limited penetration ability of the LiDAR beams creates addi-
tional uncertainty concerning the information content of the variable
sd slope. If the LiDAR beams predominantly penetrated to the ground,
the sd slope variable would contain mainly information on micro-
topography. If the beams did not reach the ground due to dense under-
story vegetation, the information would instead describe the surface
roughness induced by understory vegetation. Since the presence
Fig. 4. Scatter plots of observed versus predicted values of total, tree, s
of dense understory vegetation presumably also influences species rich-
ness, further examinationwould be necessary to determine the valuable
information contained in the sd slope variable.

4.2. Spatial patterns of richness distribution

The predictionmaps of species richness showed higher species rich-
ness for lower altitudes and areas close to riversides. In addition to the
already discussed effects of the land-use history, the observed patterns
agree well with the known natural vegetation composition of the
study area. Monte Oscuro is located in the transition zone between
Valdivian evergreen forests and Mediterranean sclerophyll forests in a
matrix of N. obliqua (Ceballos et al., 2015; Luebert & Pliscoff, 1999).
Within this transition zone, Sclerophyll species are more abundant in
the lower altitudes due to favorable temperature conditions, while the
Valdivian evergreen species are often located near the riversides due
to their water needs (Corvalán, Galleguillos, & Hernández, 2014).
Finally, N. obliqua is a competitive species typically dominant in the
hrub and herb richness. Results from all 500 boots are displayed.



Fig. 5. Maps of predicted richness per layer using the GLMmodels. White areas indicate areas out of the value range which were excluded by applying the convex hull mask.
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area (Gajardo, 1994) and occurswith associated species over the largest
fraction of the environmental gradients in the study area. At low eleva-
tions and close to riversides, it is therefore expected that species from
each forest type add to an overall increased species number.

For trees and herbs this observed tendency was stronger compared
to the shrubs, which also reached higher richness values at higher
altitudes. High tree richness values correlated strongly with low mean
canopy height values of about 7 m (Fig. S3), which supports the earlier
formulated hypothesizes that the land-use history of the site and the
corresponding successional stages have had a strong influence on the
observed species richness patterns.

As previously mentioned, high shrub richness values were distribut-
ed over a larger part of the study area. This observation could be related
to the definition of the shrub layer, which was solely based on a height
threshold. We assume that at intermediate elevation levels, several
shrub and tree specieswhich are unable to growat thehigher elevations
due to unfavorable water and temperature situations are able to estab-
lish themselves and grow up to a certain height. However, they might
have problems reaching the tree layer (as defined by height threshold
in this study) due to the increasingly unfavorable conditions with
increasing altitude.
4.3. Model comparisons

Here, the best GLMwas superior to the best RFmodel. The observed
superiority of the GLM is presumably connected to the special statistical
properties of species richness count data, which typically shows non-
symmetrical error distributions. In the field of machine learning, algo-
rithms such as RF are often referred to as being non-parametric. In
many cases this is misinterpreted as “no requirements concerning
data and error distributions exist”. RF is indeed less sensitive than
GLM when unsuitable error distributions are used. However, standard
implementations of RF are not designed to deal with non-symmetrical
error distributions, unlike GLM. In parametric statistics, GLMs allow
for the definition of non-Gaussian distributed model residuals such as
Poisson and negative binomial error distributions.

Earlier studies using LiDAR data to estimate plant richness have been
conducted in various ecosystems including Mediterranean forest
(Simonson et al., 2012), tropical forest (Hernández-Stefanoni et al.,
2014; Higgins et al., 2014; Wolf et al., 2012), coniferous forest (van
Ewijk et al., 2014; Vogeler et al., 2014) and continental forest
(Camathias et al., 2013; Leutner et al., 2012). It can be observed that in
many of these studies machine learning algorithms are preferred over



Fig. 6.Coefficient of variation (CV)maps in percentage (%) obtained from the 500 bootstrappedGLMmodel runs.White areas indicate areas out of the value rangewhichwere excluded by
applying the convex hull mask.
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parametric models. In some studies GLMs have been applied without
further specification of the chosen model family; thus, it remains un-
clear if the standard linear regression with a Gaussian error distribution
and identity-link function or amore suitable error distributionwas used
in those studies. Furthermore, bias was only rarely considered as a pa-
rameter for judging the quality of the models in earlier studies. We
strongly recommend that this should be done, as both r2 and nRMSE
can suffer from notable offset errors when bias is not considered
(Bennett et al., 2013).

In the present case, it became evident that the best GLM using only
three predictors showed in all but one cases higher performances (i.e.
higher r2 and lower nRMSE) and less bias than the best RF models
which used all 12 predictors. Differences among the models were
most pronounced for the tree layer and the total richness values for
which the bootstrap test found significantly better results for GLMs in
terms of r2 and nRMSE values. Although test results for the herb (signif-
icant only for r2) and shrub layer (significant only for bias) were less
clear, we still think a clear tendency in favor of GLMs is apparent.

GLMs and RFs each have different advantages (e.g. the option to
choose the residual distribution family and the adaptability to evolve
with data, for GLM and RF respectively), and the link between these
two approaches presents an interesting development opportunity for
modeling count data. The firstmethods heading towards such linked al-
gorithms are Generalized regression trees (Ciampi, 1991), or Poisson
regression trees which can nowadays be fitted in R (R Core Team,
2014) with the package “rpart” (Therneau, Atkinson, & Ripley, 2015).
Also, methods to deal with more specific issues of modeling count
data such as over-dispersion have already been developed (Choi,
Ahnb, & Chen, 2005; Mathlouthi, Fredette, & Larocque, 2015). With
the current dataset, however, the Poisson recursive partitioning regres-
sion trees and the Poisson boosted regression trees performed worse
than RF (results not presented here). Nevertheless, we still think that
an efficient integration of generalized regression trees into the frame-
work of random forests has a high potential for improving our ability
to model ecological count data with remote sensing data.

An extension of the conducted comparison between RF and GLMs or
any of the abovementionedmethods for comparable data sets would be
desirable to finally assess their potentials and weaknesses. One ap-
proach could also be to conduct these comparisons based on artificial
datasets of species richness. A similar approach has been presented
earlier for species distribution models (Meynard & Quinn, 2007).

5. Conclusion

We applied LiDAR derived variables to estimate vascular plant
species richness in a Mediterranean forest ecosystem in central Chile.

A model comparison between GLMs and RF showed that RF seem to
be unable to fully exploit the potential of statistics to model species
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richness count data from remote sensing data. GLMs, which are able to
account for asymmetric error distributions, were found to deliver better
results in terms of precision and bias in the present study. Therefore, the
application of RF to model count data such as species richness may be
questionable.

Altitude above sea level, terrain heterogeneity expressed as the stan-
dard deviation of the slope and mean canopy height were found to be
the most important predictor variables during the variable selection.
These variables agree well with our original hypothesis on the three
information types (vegetation structure, macro-topography, micro-
topography) contained in LiDAR data.

Thefindings of the study support the claimedpotential of LiDAR data
for mapping environmental information related to plant species rich-
ness. In combination with the choice of an appropriate statistical
model accounting for the special statistical properties of count data,
LiDAR data may therefore enhance the capabilities for mapping species
richness as onemajor aspect of biodiversity and foster the integration of
remote sensing data into monitoring for nature conservation.
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